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Soliton Evolution in the Composite-Boson Field
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We construct an elementary topological current in composite-boson field and
point out that the time component of this topological current is the density of
solitons in the field. Based on the implicit function theorem and the Taylor
expansion, the evolution of solitons is detailed in the neighborhoods of the
branch points of the composite-boson field. We also find that solitons generate
or annihilate at the limit points and encounter one another, split, or merge at the
bifurcation points of the composite-bosons field.

1. INTRODUCTION

An electron may turn into a boson by forming a flux-charge composite
in an external magnetic field, which is called a composite boson. As a
result electrons may condense without making Cooper pairs. When Bose
condensation occurs, the two-dimensional electron gas becomes an incom-
pressible fluid, which is the fractional quantum Hall (QH) state [1]. The
kinematics and the dynamics of quantum coherence based on an improved
composite-boson (CB) theory was studied by Ezawa [2]. Study of the topolog-
ical structure of this kind of CB field was shown to be necessary. In this paper,
we analyze the inner structure of the topological current and corresponding
topological charge (winding number) of the CB field and show that the time
component of the topological current is just the density of solitons in the CB
field. Furthermore, in terms of the f-mapping method [3] we introduce the
criterion of soliton generation and annihilation, that is, vanishing of the
mapping Jacobian. This condition defines the bifurcation points and allows
us to consider the processes of merging and splitting of solitons in a small
vicinity of the bifurcation points. All the results in this paper are obtained
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only from the viewpoint of topology without using any particular model
or hypothesis.

This paper is organized as follows. In Section 2 we start with the CB
field and construct an elementary topological current. By means of f-mapping
topological current theory, we prove that the time component of the topologi-
cal current is the density of the solitons in the CB field. In Section 3 several
crucial cases of branch processes are discussed and solitons are found to
generate or annihilate at the limit points, which shows that the soliton system
is unstable at these branch points. In Section 4 we consider the bifurcation
of the soliton velocity field, and show that solitons encounter one another,
split, or merge at the bifurcation points. The velocity of solitons is infinite
when they are annihilating or generating, which is obtained only from the
topological properties of the CB field. The topological charge conservation
near the branch points is also studied.

2. TOPOLOGICAL STRUCTURE OF COMPOSITE-BOSON
FIELD

The composite-boson picture is very useful for understanding the quan-
tum Hall ferromagnet [2]. For the simplest CB field

f(
›

x ) 5 eix(
›

x ) !s(x) 5 eix(
›

x ) !r0 1 r( ›x ) (1)

where s is the electron density, r0 is the average density, r(x) is the density
fluctuation, and x(x) is the conjugate phase. The field can be denoted by

f 5 f1 1 if2 (2)

and we can regard f as the complex representation of a two-dimensional
vector field

›
f 5 (f1, f2) (3)

Then we define the two-dimensional unit vector field of the CB field,

na 5 fa/|f|, |f|2 5 fafa (4)

satisfying

nana 5 1, a 5 1, 2 (5)

From Eq. (4), it is easy to see that the zeros of the field
›

f are just the
singularities of

›
n . Then we can construct a topological current of the CB

field in the (2 1 1)-dimensional space-time R211 with coordinates x1 5 x,
x2 5 y, and x0 5 t,



Soliton Evolution in the Composite-Boson Field 2839

Qi
V 5

1
2p

eijkeab jna knb, i, j, k 5 0, 1, 2 (6)

Obviously, the current (6) is identically conserved,

i Qi
V 5 0 (7)

Following the f-mapping topological current theory it can be rigorously
proved that

Qi
V 5 d2(

›
f ) Di1f

x2 (8)

where the Jacobian Di(f/x) is defined as

eabDi1f
x2 5 eijk ifa jfb

in which the usual two-dimensional Jacobian is

D1f
x2 5 D01f

x2
The topological charge density

Q0
V(

›
x ) 5

1
2p

emn eab mnavnb, m, n 5 1, 2 (9)

is just the time component of the topological current. We will show that this
topological charge density is just the density of solitons defined in the CB
field. First, as suggested in ref. 8, we define the dressed CB field c(

›
x ) by

c(x) 5 e2Ã(
›

x ) f(
›

x )

where Ã(
›

x ) is the effective vector potential, which satisfies

eBeff 5 ¹2Ã(
›

x ) 5 2pmr(
›

x ), n 5
1
m

(10)

Here Beff [8, 9] is the effective magnetic field and v is the Landau filling
factor. From Eqs. (1) and (4), we obtain that

¹2(Ã(
›

x ) 2 ln!r0 1 r( ›x )) 5 2emn eab mna vnb (11)

According to (10), one can further get
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n
4p

¹2 ln11 1
r(

›
x )

r0
2 2 r(

›
x ) 5 n

1
2p

emn eab mna vnb (12)

The Cauchy–Riemann condition yields a differential equation for the
density modulation [2],

n
4p

¹2 ln11 1
r(

›
x )

r0
2 2 r(

›
x ) 5 nQtop(

›
x ) (13)

Comparing Eqs. (12) and (13), one can find that the soliton density Qtop is
just the topological charge density Q0

V.
From Eq. (8), one can get

Qtop(
›

x ) 5 d2(
›

f ) D1f
x2 (14)

which shows that Qtop(
›

x ) does not vanish at the zero points of
›

f , i.e.,

f1(x1, x2, t) 5 0
(15)

f2(x1, x2, t) 5 0

determine the locations of zero. If the Jacobian determinant is given as

D1f
x2 5

(f1, f2)
(x1, x2)

Þ 0

then the solutions of Eq. (15) are expressed as

x1 5 x1
l (t), x2 5 x2

l (t), l 5 1, 2, . . . , N (16)

which are the worldlines of N solitons
›
r l(t) (l 5 1, 2, . . . , N ), of which the

lth soliton is charged with the topological charge blhl.
According to the d-function theory [10] and the f-mapping topological

current theory, one can prove that

d2(
›

f ) 5 o
N

l51

bl

.D(f/x) ›
r l.

d2(
›

x 2
›
r l) (17)

where the positive integer bl is called the Hopf index [5, 6] of map x → f.
The meaning of bl is that when the point

›
x covers the neighborhood of the

zero
›

x l once, the vector field
›

f covers the corresponding region bl times.
Using this expansion of d2(

›
f ) in (17), we see that

d2(
›

f ) D1f
x2 5 o

N

l51
blhld2(

›
x 2

›
r l) (18)

where hl is the Brouwer degree [5, 6]:
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hl 5
D(f/x)

.D(f/x).Z ›
r l

5 61 (19)

Direct substitution of (18) into (12) and (13) leads to the density of solitons
in the following form:

Qtop(
›

x ) 5 o
N

l51
blhld2(

›
x 2

›
r l) (20)

Here one can see that the density of solitons (14) and (20) is obtained
directly from the definition of the topological charge of the CB field, which
is more general than usually considered.

Following our theory, one can also get the velocity of the lth soliton,

V i
l 5

dxi
l

dt
5

Di(f/x)
D(f/x) Z ›

r l

, i 5 1, 2

from which one can identify the soliton velocity field as

V i 5
Di(f/x)
D(f/x)

, i 5 1, 2 (21)

The expressions given by Eq. (21) for the velocity of solitons are useful
because they avoid the problem of having to specify the position of solitons
explicitly. The positions are implicitly determined by the zero of the CB field.

The current density of solitons (N solitons with topological charge blhl

moving in space) can be written as the same form as the current density
in hydrodynamics:

Ji 5 o
N

l51
blhld2(

›
r 2

›
r l(t))

dxi
l

dt

From Eqs. (8) and (17), the current density of solitons can be written in the
concise form

Ji 5 Qi
V 5 d2(

›
f )Di(f/x)

or

Ji 5 einl eab nna lnb

According to Eq. (7), the topological charges of the solitons are conserved:

r
t

1 ¹ ?
›

J 5 0

which is only the topological property of the CB field.
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The above discussions are based on the condition that the Jacobian is
given as

D1f
x2 Þ 0 (22)

When the condition (22) fails, the solutions (16) of Eq. (15) will change in
some way. It is interesting to discuss what will happen and what it corresponds
to physically.

3. THE GENERATION AND ANNIHILATION OF SOLITONS

When

D1f
x2Z

(t*,
›

z l)

5 0

there exists the crucial case of branch processes. There are two kinds of
branch points, limit points and bifurcation points.

First we study the case when the condition (22) fails and D1(f/x) Þ 0.
The usual implicit function theorem is of no use when D(f/x) 5 0. Thus,
to use the implicit function theorem to study the branch properties of solitons,
we use the Jacobian D1(f/x) instead of the D3(f/x) to search for the solutions
of

›
f (x) 5 0. This means we have replaced t by x1. Then we have a unique

solution of Eqs. (15) in the neighborhood of the points (t*,
›
z l),

t 5 t(x1)

x2 5 x2(x1) (23)

with t* 5 t(z1
l ). We call the critical points (t*,

›
z l) the limit points. In the

present case,

dx1

dt Z
(t*,

›
z l)

5
D1(f/x)
D(f/x) Z

(t*,
›

z l)

5 ` (24)

i.e.,

dt
dx1Z

(t*,
›

z l)

5 0 (25)

The Taylor expansion of the solution of Eq. (23) at the limit point (t*,
›
z l) is [3]
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t 2 t* 5
1
2

d 2t
(dx1)2Z

(t*,
›

z l)

(x1 2 z1
l )2 (26)

which is a parabola in the x1–t plane. From (26) we can obtain two solutions
x1

1(t) and x1
2(t), which give the branch solutions of solitons at the limit points. If

d 2t
(dx1)2Z

(t*,
›

z l)

. 0

we have the branch solutions for t . t* (see Fig. 1a), otherwise we have the
branch solutions for t , t* (see Fig. 1b). These two cases are related to the
origin and annihilation of solitons. From Eq. (24), one can also find the result
that the velocity of solitons is infinite when they are generating or annihilating,
which is found only from the topology of the CB field.

Since the topological current of the CB field is identically conserved,
the topological charges of these two generated or annihilated solitons must
be opposite at the limit point, i.e.,

bl1hl1 5 2bl2h2

which shows that bl1 5 bl2 and hl1 5 2hl2.
For a limit point, one also requires

D11f
x2Z

(t*,
›

z l)

Þ 0

As to a bifurcation point [12], it must satisfy a more complex condition. This
case will be discussed in the following section in detail.

4. BIFURCATION OF SOLITONS

Now let us turn to consider the other case, in which the restrictions of
Eqs. (15) at the bifurcation point (t*,

›
z l) are

D1f
x2Z

(t*,
›

z l)

5 0, D11f
x2Z

(t*,
›

z l)

5 0 (27)

These two restrictive conditions lead to the important fact that the functional
relationship between t and x1 is not unique in the neighborhood of the
bifurcation point (t*,

›
z l). The equation

dx1

dt Z
(t*,

›
z l)

5
D1(f/x)
D(f/x) Z

(t*,
›

z l)

(28)

under the restraint (27) directly shows that the direction of the integral curve
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a

b

Fig. 1. Projecting the worldlines of solitons onto the x1–t plane. (a) A pair of solitons with
opposite charges generate at the limit point, i.e., the origin of solitons. (b) A pair of solitons
with opposite charges annihilate at the limit point.
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of Eq. (28) is indefinite, i.e., the velocity field of solitons is indefinite at the
point (t*,

›
z l). This is why the point (t*,

›
z l) is called a bifurcation point of

the CB field
›

f . To find the different directions of all branch curves at the
bifurcation point, we suppose that

f1

x2 Z
(t*,

›
z l)

Þ 0 (29)

From f1(x1, x2, t) 5 0, the implicit function theorem says that there exists
one and only one functional relationship

x2 5 x2(x1, t) (30)

According to the f-mapping topological current theory, the Taylor expansion
of the solution of Eqs. (15) in the neighborhood of the bifurcation point
(t*,

›
z l) can be expressed as [3]

A(x1 2 x1
l )2 1 2B(x1 2 x1

l )(t 2 t*) 1 C(t 2 t*)2 5 0

which leads to

A1dx1

dt 2
2

1 2B
dx1

dt
1 C 5 0 (31)

and

C1 dt
dx12

2

1 2B
dt

dx1 1 A 5 0 (32)

where A, B, and C are three constants. The solutions of Eq. (31) or Eq. (32)
give different directions of the branch curves (worldlines of solitons) at the
bifurcation point. There are four possible cases, which will show the physical
meaning of the bifurcation points.

Case 1 (A Þ 0). For D 5 4(B2 2 AC ) . 0, from Eq. (31) we get two
different directions of the velocity field of solitons,

dx1

dt Z
1,2

5
2B 6 !B2 2 AC

A
(33)

which is shown in Fig. 2, where two worldlines of solitons intersect with
different directions at the bifurcation. This shows that two solitons encounter
one another and then depart at the bifurcation point.

Case 2 (A Þ 0). For D 5 4(B2 2 AC ) 5 0, from Eq. (31) we get only
one direction of the velocity field of solitons,
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Fig. 2. Projecting the worldlines of solitons onto the x1–t plane. Two worldlines intersect with
different directions at the bifurcation point, i.e., two solitons encounter one another at the
bifurcation point.

dx1

dt Z
1,2

5 2
B
A

(34)

which includes three important cases. First, two worldlines tangentially con-
tact, i.e., two solitons tangentially encounter one another at the bifurcation
point (see Fig. 3a). Second, two worldlines merge into one worldline, i.e.,
two solitons merge into one soliton at the bifurcation point (see Fig. 3b).
Finally, one worldline resolves into two worldlines, i.e., one soliton splits
into two solitons at the bifurcation point (see Fig. 3c).

Case 3 (A 5 0, C Þ 0). For D 5 4(B2 2 AC ) 5 0, from Eq. (32) we have

dt
dx1Z

1,2

5
2B 6 !B2 2 AC

C
5 0, 2

2B
C

(35)

There are two important cases: first, one worldline resolves into three
worldlines, i.e., one soliton splits into three solitons at the bifurcation point
(see Fig. 4a). Second, three worldlines merge into one worldline, i.e., three
solitons merge into one soliton at the bifurcation point (see Fig. 4b).

Case 4 (A 5 C 5 0). Equations (31) and (32) give, respectively,
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a

b

Fig. 3. (a) Two worldlines tangentially contact, i.e., two solitons tangentially encounter one
another at the bifurcation point. (b) Two worldlines merge into one worldline, i.e., two solitons
merge into one soliton at the bifurcation point. (c) One worldline resolves into two worldlines,
i.e., one soliton splits into two solitons at the bifurcation point.
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c

Fig. 3. Continued.

dx1

dt
5 0,

dt
dx1 5 0 (36)

This case is obvious (Fig. 5) and is similar to Case 3.

The above solutions reveal the evolution of solitons. Besides the encoun-
ter of solitons, i.e., two solitons encountering one another at the bifurcation
point (see Figs. 2 and Fig. 3a), it also includes the splitting and merging of
solitons. When a multicharged soliton moves through the bifurcation point,
it may split into several solitons along different branch curves (see Figs. 3c,
4a, and 5b). In contrast, several solitons can merge into one soliton at the
bifurcation point (see Figs. 3c, 4b, and 5a). The identical conservation of the
topological charge shows that the sum of the topological charge of the final
soliton (solitons) must be equal to that of the initial soliton (solitons) at the
bifurcation point, i.e.,

o
f

blfhlf 5 o
i

blihli

for fixed l. Furthermore, the generation, annihilation, and bifurcation of
solitons are not gradual changes, but start at a critical value of arguments,
i.e., they are sudden changes.
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a

b

Fig. 4. Two important cases of Eq. (35). (a) One worldline resolves into three worldlines, i.e.,
one soliton splits into three solitons at the bifurcation point. (b) Three worldlines merge into
one worldline, i.e., three solitons merge into one soliton at the bifurcation point.
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a

b

Fig. 5. Two worldlines intersect normally at the bifurcation point. This case is similar to Fig.
4. (a) Three solitons merge into one soliton at the bifurcation point. (b) One soliton splits into
three solitons at the bifurcation point.
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